机器学习与诊断 panel 构建

2019-05-16 10:03 来源:丁香园 作者:
字体大小
- | +

机器学习的发展背景:人工智能

人工智能(Artificial Intelligence,缩写为 AI)是对人的意识、思维过程进行模拟的一门新学科。计算机科学家们在人工智能的技术核心--机器学习(Machine Learning)和深度学习(Deep Learning)领域上已经取得重大的突破,机器被赋予强大的认知和预测能力。

机器学习:实现人工智能的高效方法

从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。它是通过经验或数据来改进算法的研究,通过算法让机器从大量历史数据中学习规律,得到某种模式并利用此模型预测未来,机器在学习的过程中,处理的数据越多,预测结果就越精准。

机器学习在人工智能的研究中具有十分重要的地位。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。从 20 世纪 50 年代人们就开始了对机器学习的研究,从最初的基于神经元模型以及函数逼近论的方法研究,到以符号演算为基础的规则学习和决策树学习的产生,以及之后的认知心理学中归纳、解释、类比等概念的引入,至最新的计算学习理论和统计学习的兴起,机器学习一直都在相关学科的实践应用中起着主导作用。现在已取得了不少成就,并分化出许多研究方向,主要有符号学习、连接学习和统计学习等。

机器学习的结构模型

机器学习的本质就是算法。算法是用于解决问题的一系列指令。程序员开发的用于指导计算机进行新任务的算法是我们今天看到的先进数字世界的基础。计算机算法根据某些指令和规则,将大量数据组织到信息和服务中。机器学习向计算机发出指令,允许计算机从数据中学习,而不需要程序员做出新的分步指令。

机器学习的基本过程是给学习算法提供训练数据。然后,学习算法基于数据的推论生成一组新的规则。这本质上就是生成一种新的算法,称之为机器学习模型。通过使用不同的训练数据,相同的学习算法可以生成不同的模型。从数据中推理出新的指令是机器学习的核心优势。它还突出了数据的关键作用:用于训练算法的可用数据越多,算法学习到的就越多。事实上,AI 的许多最新进展并不是由于学习算法的激进创新,而是现在积累了大量的可用数据。

图片1.png

目前,凭借专业的生信团队和强大的生物信息云平台,若谷已经还原和开发了多个中高难度算法,在未来的发展中,将继续致力于算法的相关开发业务,为更多用户提供高质量的算法开发和还原服务。

企业微信截图_1558677891184.png


题图来源:站酷海洛


编辑: 虞佳男

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

网友评论